Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 197: 106475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569399

RESUMEN

Research cruises were conducted to sample the invertebrate community along the shelf off the central coast of Oregon from 2010 to 2018. A large marine heatwave (MHW) hit the northeast Pacific in fall 2014 and persisted locally through 2015. Here, we assessed the caloric content changes of Crangon alaskensis (a common sandy shrimp) before, during, and after the 2014-2015 MHW. We found significant reductions in the caloric density of shelf populations of C. alaskensis during summer 2015. Oceanographic indices like the Biologically Effective Upwelling Transport Index (BEUTI) and the Pacific Decadal Oscillation (PDO) had greater predictive power for caloric density and biomass than in situ conditions, although bottom temperature and dissolved oxygen were also significantly correlated with caloric density. Caloric density of C. alaskensis was highest in 2018, indicating favorable conditions after the intense MHW of 2014-2015 allowed the caloric density to rebound.


Asunto(s)
Crangonidae , Animales , Océano Pacífico , Estaciones del Año , Invertebrados , Temperatura
2.
J Biogeogr ; 45(12): 2701-2717, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30996510

RESUMEN

AIM: We assessed whether currently described marine biogeographic boundaries apply to shelf macrofauna and which environmental drivers were most associated with species differences among regions. LOCATION: Pacific coast of North America from the Strait of Juan de Fuca in Washington to the California-Mexico border. METHODS: Van Veen grab samples were collected from soft sediment 28-138 m deep and sieved using 1 mm mesh. Spatial patterns of species richness, diversity, and abundance were examined in relation to latitude and environmental parameters (temperature, salinity, dissolved oxygen, sediment % fines, and total organic carbon). Analyses of latitudinal distribution patterns of individual species were combined with multivariate analyses of community composition to determine biogeographic and habitat boundaries for mid-depth continental shelf macrofauna. RESULTS: Species richness, diversity, and abundance significantly decreased with increasing latitude, primarily between 32 and 40° N. There were positive associations of richness, diversity (H'), and abundance with upwelling index, sediment % fines, and TOC (<2%). Temperature and DO also were significant for richness and H' but not abundance. Assessment of individual species ranges found major faunal transitions at latitudes 33-34°, 37°, 44°, and 46-47°. Major assemblage differences were found at 34.5°, and 42°. Within each latitudinal region, significantly different macrofauna communities were found in sediment with <5% fines. MAIN CONCLUSIONS: The biogeographic boundaries proposed under the Marine Ecoregions of the World schema are more closely aligned with shelf fauna distributions than those developed using west coast rocky intertidal communities. However, the proposed province boundary at Cape Mendocino is not apparent in the shelf macrofauna, and a transition appears to occur closer to the Oregon-California border. Further, the shelf macrofauna indicate the Channel Islands should be a separate subregion from mainland southern California Bight. Multivariate community analyses minimizing the impact of rare species appeared more useful in determining macrofaunal community biogeographic boundaries than analysis of individual species range endpoints, which are strongly influenced by uncommon species.

3.
Environ Monit Assess ; 189(8): 413, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28735436

RESUMEN

With increasing cascading effects of climate change on the marine environment, as well as pollution and anthropogenic utilization of the seafloor, there is increasing interest in tracking changes to benthic communities. Macrofaunal surveys are traditionally conducted as part of pre-incident environmental assessment studies and post-incident monitoring studies when there is a potential impact to the seafloor. These surveys usually characterize the structure and/or spatiotemporal distribution of macrofaunal assemblages collected with sediment cores; however, many different sampling protocols have been used. An assessment of the comparability of past and current survey methods was in need to facilitate future surveys and comparisons. This was the aim of the present study, conducted off the Oregon coast in waters 25-35 m deep. Our results show that the use of a sieve with a 1.0-mm mesh size gives results for community structure comparable to results obtained from a 0.5-mm mesh size, which allows reliable comparisons of recent and past spatiotemporal surveys of macroinfauna. In addition to our primary objective of comparing methods, we also found interacting effects of seasons and depths of collection. Seasonal differences (summer and fall) were seen in infaunal assemblages in the wave-induced sediment motion zone but not deeper. Thus, studies where wave-induced sediment motion can structure the benthic communities, especially during the winter months, should consider this effect when making temporal comparisons. In addition, some macrofauna taxa-like polychaetes and amphipods show high interannual variabilities, so spatiotemporal studies should make sure to cover several years before drawing any conclusions.


Asunto(s)
Organismos Acuáticos/clasificación , Biodiversidad , Monitoreo del Ambiente/instrumentación , Invertebrados/clasificación , Animales , Organismos Acuáticos/crecimiento & desarrollo , Cambio Climático , Monitoreo del Ambiente/métodos , Invertebrados/crecimiento & desarrollo , Oregon , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA